
J .  Fluid Mech. (1983), vol. 137, p p .  251-272 

Printed in Great Britain 

251 

Zero-crossings in turbulent signals 

By K. R. SREENIVASAN, 
Applied Mechanics, Yale University 

A. PRABHU AND R. NARASIMHA 
Indian Institute of Science, Bangalore 

(Received 1 February 1982 and in revised form 1 August 1983) 

A primary motivation for this work arises from the contradictory results obtained 
in some recent measurements of the zero-crossing frequency of turbulent fluctuations 
in shear flows. A systematic study of the various factors involved in zero-crossing 
measurements shows that the dynamic range of the signal, the discriminator 
characteristics, filter frequency and noise contamination have a strong bearing on the 
results obtained. These effects are analysed, and explicit corrections for noise 
contamination have been worked out. New measurements of the zero-crossing 
frequency No have been made for the longitudinal velocity fluctuation in boundary 
layers and a wake, for wall shear stress in a channel, and for temperature derivatives 
in a heated boundary layer. All these measurements show that a zero-crossing 
microscale, defined as A = (27rN0)-I, is always nearly equal to the well-known Taylor 
microscale h (in time). These measurements, as well as a brief analysis, show that 
even strong departures from Gaussianity do not necessarily yield values appreciably 
different from unity for the ratio A / h .  Further, the variation of No/No,,, across the 
boundary layer is found to correlate with the familiar wall and outer coordinates; 
the outer scaling for No,,, is totally inappropriate, and the inner scaling shows only 
a weak Reynolds-number dependence. It is also found that the distribution of the 
interval between successive zero-crossings can be approximated by a combination of 
a lognormal and an exponential, or (if the shortest intervals are ignored) even of two 
exponentials, one of which characterizes crossings whose duration is of the order of 
the wall-variable timescale v /  V,, while the other characterizes crossings whose 
duration is of the order of the large-eddy timescale &/Urn.  The significance of these 
results is discussed, and it is particularly argued that the pulse frequency of Rao, 
Narasimha & Badri Narayanan (1971) is appreciably less than the zero-crossing rate. 

1. Introduction 

frequency No of zero-crossings (with positive or negative slope) is given by 
For a stationary stochastic signal y = y(s) ,  Rice (1945) proved the result that the 

if y and y = dy/dx both have Gaussian distributions and are statistically independent. 
Liepmann (1949) gave a simpler proof of the result, and pointed out that, if y were 
a turbulent velocity fluctuation, measurements of No could provide an independent 
indication of the viscous dissipation (which is proportional to 
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where h is the well-known ‘Taylor’ microscale). In  fact, i t  is convenient to introduce 
a zero-crossing (or ‘ Liepmann ’) microscale 

and rephrase Rice’s theorem as asserting the equality of the two scales ( A  = A )  under 
the stated conditions, 

Later Ylvisaker (1965) proved that A = h for any continuous stationary Gaussian 
process y with finite h without invoking statistical independence between y and y. 

Since turbulence is essentially non-Gaussian, Rice’s result cannot a priori be 
expected to hold. However, the measurements of Liepmann, Laufer & Liepmann 
(1951) have shown that A x h (to within about 20%) in isotropic turbulence. The 
implication is that the zero-crossing scale effectively characterizes the important 
dynamical process of turbulence-energy dissipation. The general a posteriori explan- 
ation for this interesting finding of Liepmann et al. has been that the one-point 
probability density function (p.d.f.) of velocity in isotropic turbulence is not too far 
from being a Gaussian. What is perhaps intriguing is a similar finding (that A % A )  
even when the one-point p.d.f.s are strongly non-Gaussian, such as for the streamwise 
velocity fluctuation u in a two-dimensional channel (Laufer 1950) and for wall 
shear-stress fluctuations in a pipe (Wetzel & Killen 1972). On this basis, one might 
be tempted to  conclude that Rice’s result has a much more general applicability than 
it has been proved for, but the measurements of Wygnanski & Fiedler (1969) dictate 
a need for some caution: these authors found that the ratio A/A for u as well as the 
radial velocity fluctuation ‘u varied generally between 1 and 1.5 along the centreline 
of an axisymmetric jet, increasing to a value as high as about 2 for v towards the 
edges of the jet. 

More recently, Badri Narayanan, Rajagopalan & Narasimha (1974, 1977) reported 
extensive zero-crossing measurements of u in nearly isotropic grid turbulence and in 
a turbulent boundary layer. In these measurements, the zero-crossing frequency was 
counted visually from a trace of the signal u obtained on 35 mm film (see also $3.1). 
Theirresults suggested that, while A / A  x 1 ingrid turbulence, the ratio in the turbulent 
boundary layer varied between about 3 and 5. This later result (somewhat unexpected 
on the basis of the balance of evidence discussed above) was attributed to the stronger 
departures from Gaussianity of turbulent fluctuations in the boundary layer. 

While this last result tends to suggest that  A is not a direct measure of dissipation 
in strongly non-Gaussian situations, further results of Badri Narayanan et al. 
emphasized the role of the zero-crossing scale in another important dynamical 
context. Their measurements suggested that the zero-crossing frequency No ofa given 
signal was nearly equal to the characteristic pulse frequency N p  of that signal. Pulses 
are simply patches of activity in a turbulent signal that has been passed through a 
narrow-band filter set a t  a sufficiently high midband frequency. Their characteristic 
frequency N p  was measured in these experiments with the technique of Rao, 
Narasimha & Badri Narayanan (1971). These high-frequency pulses have a direct 
bearing on the fine-structure and the internal intermittency of turbulence (e.g. 
Batchelor & Townsend 1949; Rao et al. 1971 ; Kuo & Corrsin 1971 ; Sreenivasan 1983). 
Two other properties of importance are attributed to the pulse frequency. First Rao 
et al. implied a connection between these pulses and the turbulent bursts observed 
by Kline et al. (1967) in the wall region of a turbulent boundary layer, suggesting 
that these pulses in a boundary layer are a part of the signature of a burst. Secondly 
Brown & Thomas (1977) showed that the pulses are coupled to the large-scale motion. 
There are conflicting conclusions about the relation between the pulses, bursts and 
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the large structure, but the connection between the high-frequency pulses and the 
fine-structure intermittency is almost tautological. In practice, the determination of 
the characteristic pulse frequency N p  is quite involved (e.g. Rao et al. 1971 ; KUO & 
Corrsin 1971), and this in itself is therefore a sufficient reason for taking seriously 
the conclusion of Badri Narayanan et al. that N p  x No in general ; their contention was 
that N p  x No is indeed the general result for turbulence which, in the relatively simple 
and degenerate case of isotropic turbulence, simplifies to No = (27cA)-l x (2nA)-'. 

Essentially motivated by the new significance attributed to A ,  Antonia, Danh & 
Prabhu (1976) also made zero-crossing measurements electronically using a com- 
parator and a digital counter. Their measurements included u in a variety of shear 
flows including the atmospheric surface layer, and the temperature fluctuation 8 in a 
slightly heated turbulent boundary layer. They too found that the ratio N p / N o  x 1 
for all signals (except in the atmospheric surface layer). However, in contrast with 
the conclusions of Badri Narayanan et at., Antonia et al. found that AlA x 1 for u even 
in a turbulent boundary 1ayer.t In addition to this major difference, the data of Badri 
Narayanan et al. and Antonia et al., both obtained at  comparable Reynolds numbers, 
differ also in the value of the non-dimensional pulse frequency by a factor of 3 or 4. 

Much confusion thus exists on the precise role that zero-crossings play in the 
physical description of turbulence. Several questions arise. Is the ratio A / A  substan- 
tially different from unity for strongly non-Gaussian signals ? Is this ratio Reynolds- 
number-dependent in a turbulent boundary layer ? Is N p / N o  x 1 ? What are the scaling 
laws for No especially in the inner layer where bursting occurs? What are the 
implications of any of these conclusions on the outer-layer scaling proposed for the 
pulse frequency by Rao et al. ? What are the sources of inconsistency among the 
different measurements? The goal of this paper is to answer such questions, and 
further explore the connection between the zero-crossings and the physical processes 
occurring in a turbulent shear flow. We may further note that the zero-crossings are 
of interest also in communication theory and in the context of signal-processing as 
in laser-Doppler measurements and, finally, as an approximation to the so-called 
'topological entropy' (e.g. Bowen 1970) as a means of quantifying chaotic behaviours 
displayed by dynamical systems. The crossing frequency of levels other than zero (also 
considered here briefly) is of interest in such diverse contexts as agriculture, aircraft 
design, pollination and quality control. 

The contradictory conclusions of the studies cited above clearly call for further 
careful measurements of zero-crossings. New measurements were carried out in two 
turbulent boundary layers, a two-dimensional channel and a two-dimensional wake 
of a circular cylinder. Section 2 describes the experimental set-up and conditions. 
While making these measurements, we discovered that the zero-crossing frequency 
can be strongly affected by a variety of factors such as the dynamic range of the signal, 
the filtering frequency, the signallnoise ratio, and the characteristics of the comparator 
(or its equivalent in visual counting). We thus undertook ($3) a detailed systematic 
investigation of these various factors influencing the zero-crossing measurements ; 
corrections arising from noise contamination have also been worked out explicitly. 
Section4 describes the new results ; using some measurements in a heated axisymmetric 
jet as a reference, a major shortcoming of some of the previous data is pointed out. 
This section also contains a brief analysis of the ratio A l A  for several non-Gaussian 
signals. The significance of the present results is discussed in $5, which also provides 
a summary of the conclusions. Finally, an assessment is made in the Appendix of the 
accuracy attainable in the zero-crossing measurements. 

t This same ratio was, however, found to be 2 for 8. 
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Lengthscale for the 
Type of flow Signal analysed Reynolds number Reynolds number 

Boundary layer u 
U 

2 x 1 0 4  
6.8 x 10s-106 

Boundary-layer thickness 6 
Boundary-layer thickness d 

Heated boundary Temperature 5730 Momentum thickness 0 

Wake U 9Ooo Width at half-maximum defect 8 
Channel Wall stress 6000-12000 Half-width a 

layer derivatives 

TABLE 1. Flows studied 

2. Experimental set-up and conditions 
Experiments were carried out in several flows whose brief description and salient 

parameters are listed in table 1. The wind tunnels used for creating these flows were 
standard open-circuit type, and need no further discussion. It was established that 
all the flows were fully developed under the conditions of measurement. The notation 
is as follows: U ,  = freestream velocity, U,  = the velocity on the centreline of the 
channel, 6 = boundary-layer thickness, a = half-width of the channel, 8 = half-defect 
wake thickness, v = kinematic viscosity, R6 = U ,  S / v ,  x6 = U ,  8 / v ,  R, = U, alv. 

Wall-shear fluctuations were obtained with a DISA miniature 55A93 probe, which 
is a quartz-coated nickel film deposited on the plane end of a quartz rod. The 
frequency response of the probe, as quoted by the manufacturer, is good up to 30 kHz. 

Streamwise velocity fluctuation u was measured with single-wire probes of 5 pm 
and 2.5 pm diameter PtiRh wire. They were operated on a constant-temperature 
anemometer whose response was flat up to 15 kHz. The differentiator had a linear 
response up to 15 kHz. A block diagram of the signal-processing equipment is given 
in figure 1. In some of the measurements, the probes were operated on a DISA 55M01 
constant-temperature anemometer. The signals were linearized (through a DISA 
55D10 linearizer) and passed through a 55D26 signal conditioner before being 
recorded on a Hewlett-Packard 39608 FM tape recorder, whose - 3 dB upper cut-off 
frequency was 6.3 kHz. Zero-crossings were obtained by first removing the d.c. of the 
signal with a Krohn-Hite filter (cut-off a t  0.02 Hz) and then passing the output 
through a Digital Electronics comparator (with the comparator level grounded) and 
a digital frequency meter. The zero-crossing frequency was obtained not only using 
tape-recorded signals but also directly in situ. The tape-recorded signals were 
generally processed as described above ; but, in some cases, the zero-crossing frequency 
was obtained directly on a PDP 11/45 computer instead of a frequency meter. Here, 
the signals were pre-filtered at the estimated Kolmogorov frequency f7 and then were 
digitized at  2f7 on a 10 bit (including sign) A/D converter. The probability density 
function of the interval between successive zero-crossings was obtained (as a rule) 
on the digital computer. On occasions, this was checked by obtaining a fairly long 
trace (about 20sec) of the signal on photographic paper and computing the 
distribution by straightforward counting. 
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FIGURE 1. Block diagram of signal-processing equipment. 

3. Factors influencing zero-crossing measurements 
3.1. Dynamic range of the signal 

Figure 2 gives the circuit diagram of the comparator used here. It consists essentially 
of an open-loop op-amp differential amplifier with transistor clippings at  the output. 
The two outputs are complementary to each other, with the normal output being high 
when the input voltage is greater than the reference voltage, which can be varied at 
will. 

Figure 3 shows a typical random signal and the corresponding normal output from 
an ideal comparator and the actual one. The two outputs differ for the following 
reasons. (a) When the reference voltage is zero the real output is high only when the 
signal voltage is higher than a small non-zero d.c. bias voltage (positive or negative), 
which is the product of the offset bias current at  the input and the difference in 
resistance between the two input resistors of the op-amp. This small bias voltage could 
in principle be corrected for by adjusting the reference voltage suitably. ( b )  Because 
of the finite open-loop gain of the op-amp, there exists a region called the dead band, 
such that only when the signal level crosses this dead band will the output of the 
op-amp be sufficiently large to trigger the transistor (see figure 2); only then is the 
output of the comparator high. The width of this dead band increases with frequency 
since the open loop gain of the op-amp decreases with the increase in frequency. To 
minimize this error, it is therefore necessary to amplify the signal so that the ratio 
of the dead band to the signal amplitude is sufficiently small. 

Figure 4 shows the effect on No of the gain C of the system through which the signal 
is processed. A t  low signal amplitudes, there will be many ‘runs’ (a term in common 
statistical usage (see e.g. Feller 1950) which we adopt to indicate the signal between 
two successive zero-crossings) which are masked within the dead band. There will in 
principle always be some such runs no matter what the gain, but they will become 
fewer and fewer with increasing gain and the true value is approached from below 
when the gain is sufficiently high. 

To obtain an appreciation of the numbers involved, consider the following 
argument for a dead band B which we shall consider (for simplicity) to be 
independent of frequency. If p(y, g) represents the joint probability density of y and 
y, then Rice showed that the number of times N ( [ )  that a given signal crosses the 
level 6 is given by 

(3.1) 
-m 



256 

y -  

K .  R. Sreenivasan, A .  Prabhu and R.  Narasimha 

- 
Ideal output 

100 

- L- 

kL2 

A- 

0.056 pF +5 

- 
BCY 56 

Reference Signal 
input input 

FIGURE 2. Circuit diagram of the comparator. 

Typical Dead band 

Output modified 

by the dead band 

FIGURE 3. A typical random signal and the effect of dead band. 

If y and y are statistically independent, (3.1) can be manipulated to write 

Measurements show that this relation is adequately satisfied for ‘white’ noise from 
a commercial random-noise generator whose measured p.d.f. is Gaussian to a good 
approximation, as well as for the evidently non-Gaussian wall shear-stress fluctuation 
(figure 5 ) .  

It follows from (3.2) that the fractional error B = ( N o - N ( B ) ) / N o  is given by 

For a Gaussian process with p , ( y )  - e-iY2 we find by inverting (3.3) that  to 
achieve E = 0.2 (i.e. 20% accuracy in the zero-crossing frequency) we must have 
B x 0.7 x r.m.s. value of the signal. In  typical experimental situations here, B x 7 mV, 
and so the signal must be amplified to an r.m.s. value of a t  least 10 mV. A more 
stringent demand (for instance) that E = 0.02 requires that the r.m.s. value of the 
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FIGURE 4. Effect of system gain on the number of zero-crossings: 0, wall shear-stress 
fluctuations, R, = 11.5 x los; x , white noise. 

1 .o 
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.g =x/a  

FIGURE 5. Variation with threshold setting of the zero-crossing frequency, compared with the 
amplitude probability density function; see (3.2). 5 = threshold setting in units of the r.m.s. value 
of the signal. Measured p(g ) /p (O)  : -, Gaussian; ---, wall shear-stress fluctuation. Measured 
N(E) /N0:  A, white noise; 0, wall shear-stress fluctuation. 

signal must be a t  least 25 mV. Actually the gains required are somewhat higher than 
these estimates show, because of the frequency dependence of the dead band. 

I n  order to  obtain similar estimates for any other quantity whose p.d.f. is not known 
analytically, i t  is clear that  (3.3) can be inverted only with the help of an empirical 
fit to  the measured p.d.f. For u in the viscous sublayer of a turbulent boundary layer 
(say a t  y+ x 2) using the measured probability density function of Gupta & Kaplan 
(1972), we require that the r.m.s. values of the signal must be a t  least 20 mV (x  3B) 
and 50 mV ( E 723) respectively for e = 0.2 and 0.02. 
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FIGURE 6. Variation of No with the cut-off frequency: 0, poor signal-to-noise ratio; 
x , reasonably good signal-to-noise ratio. 

3.2. Frequency cut-off and noise 

It is clear that the measured zero-crossing frequency will be influenced significantly 
by the high-frequency content of the signal. If the signal is passed through a low-pass 
filter set at  the frequency fi, it is to be expected that the zero-crossing frequency 
increases initially with fl (this increase being linear for white noise) and then attains 
a plateau, representing the true value. Further increase in the value of fl increases 
the noise content; therefore at substantially higher settings of fi, the number of 
crossings starts increasing again : illustrative experimental data are shown in 
figure 6. 

If the signal-to-noise ratio is low, so that the 'gap' between the high-frequency 
content of the signal and the noise is small, the plateau region diminishes in extent. 
Even if the noise is marginally higher than is acceptable in many cases, this plateau 
may disappear completely (figure 6).  Under these conditions, it is not possible to 
obtain the correct crossing frequency simply by setting the filter to a certain cut-off 
value. It is thus useful to consider the problem of explicit noise correction in more 
detail. 

3.3. Corrections to No for noise contamination 

It is reasonable to assume that the signal/noise ratio is large and that the signal and 
noise are statistically independent. 

y = s+n ,  (3.4) 
Let 

where s is the signal and n the noise.? Then the joint probability density p,(y, y )  can 
be written as a convolution of the joint probability densities p,(s, 9 )  and p,(n, li) : 

t Here and elsewhere in this paper, to avoid unnecessary symbols, we have used the same symbol 
for the random variable as well as the possible value in probability space whish that function can 
take. 



Zero-crossings i n  turbulent signals 259 

Expanding p , ( ( y - n ) ,  ($-n)} in Taylor series around (y, 9) and retaining only terms 
up to second order, we get 

Using (3.6) in (3.5), evaluating the integrals with respect to n and 6 and noting that 
the mean values of n and n are zero (which implies that = 0 if n and n are 
independent), we get - - 

(3.7) 

Using (3.7) in (3.1) we get the level-crossing rate as 

Taking the differentiation outside the integral in the second term on the right-hand 
side of (3.8), integrating the third term by parts, and simplifying, we get 

where 

(3.9) 

(3.10) 

(3.11) 

which expresses the measured zero-crossing rate in terms of the true value corres- 
ponding to the signal. In many situations, the correction due to the third term in (3.1 1 )  
is larger than that due to the second, because white noise (with a flat spectral density) 
has a relatively high mean-square derivative. 

To demonstrate the effectiveness of these calculations, measurements were made 
in a boundary layer with a 5 pm diameter hot wire, which gives a generally noisier 
signal than that observed with the usual 2.5 pm diameter wire. Figure 7(a) shows 
the zero-crossing frequency plotted as a function of the gain and cut-off frequency. 
As mentioned in $3.1, this frequency does not attain a final asymptotic value either 
with respect to the gain of the system or the cut-off frequency. 

An iteration is in principle required in using (3.11), but, if the noise is not too large, 
it is often possible to use the A and h corresponding to signal plus noise instead of 
for the signal alone. Such was the case for present measurements. Figure 7 ( b )  shows 
that, when the data are corrected for noise according to (3.11), there is a value of No 
which remains reasonably independent of the gain as well as the cut-off frequency. 
Noise was measured by operating the hot wire in the freestream at a wind-tunnel 
speed equal to that at the measuring station within the boundary layer. 
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FIGURE 7 (a, b). For caption see facing page. 

3.4.  Correction to the Taylor microscale 

From (3.4), and noting that s and n are independent, one gets 
- _ _  
9 2  = 8 2 + 7 i 2 ;  

hence 
(3.12) 

_ -  
where r = (s2/n2)i  is the signal-to-noise ratio. Figure 7 ( c )  shows measurements of the 
time derivatives of the noise as well as the signal representing the streamwise velocity 
fluctuations at  the centre of a plane wake. When corrected for noise according to 
(3.12), the mean-square derivative of u is seen to be reasonably independent of the 
cut-off frequency above 2 kHz. 
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FIQIJRE 7. (a) Variation of No with the gain and cut-off frequency (with no correction for noise) 
in a two-dimensional boundary layer. U = 12 m/s, Ra x 2 x lo', y l8 x 0.1. Cut-off frequency in kHz : 
V, 2; .,4; 0, 6; A, 10; 0, 15. ( b )  Data of (a) corrected for noise. Legend same as in figure 7(a ) .  
No does not reach its asymptotic value at 2 kHz cut-off frequency and hence those points are not 
shown. The comparator would not be measuring all the zero-crossings at 15 kHz cut-off frequency 
with gain at 70; hence the correction for noise brings the point appreciably below the true value 
as shown. (c) Variation with the cut-off frequency of the mean-square derivative of the signal, noise 
and the sum : , noise, 0, signal +noise; --, corrected for noise. Signal is u in a turbulent wake. 

4. Results 
4.1.  The ratio of the two microscales 

Figure 8 shows the ratio A / A  for different signals in different flows. (For a discussion 
of the accuracy of the present results see the Appendix.) Clearly, A x A in all the flows 
investigated here. In these measurements, the precautions previously mentioned in 
$3 were observed. In particular, both the gain and the cut-off frequency were 
appropriate to the respective plateau regions discussed in $53.1 and 3.2. Corrections 
for noise were also made. It is probably worth emphasizing the result from figure 8 (d )  
which shows that A / A  x 1 also for strongly non-Gaussian signals such as the 
temperature derivatives in a slightly heated turbulent boundary layer. (For a 
description of how the derivatives were measured, reference should be made to 
Sreenivasan, Antonia & Danh (1977).)  

We thus suspected that the previous results leading to contrary conclusions arose 
directly from experimental errors in measuring the zero-crossing frequency and/or 
the Taylor microscale. With this in mind, we particularly examined in detail the 
method employed by Badri Narayanan et al. (1974,1977) .  These authors passed their 
signals through a splitter which gives only one half of the signal (above or below the 
mean). The split signal was then displayed with zero sweep on an oscilloscope screen 
and photographed on 35 mm film using a drum camera. The number of runs was then 
counted visually. 

In  this technique, an effective dead band can arise in two ways. First, the electronic 
dead band discussed in connection with the comparator is equally relevant to the 
splitter, which would not be triggered by a certain number of runs at  low amplitude. 
Secondly, the finite thickness of the trace of the photographed signal can act as an 
effective dead band. The typical height of the photographed film was about 10 mm 
from the mean of the signal to the largest amplitude recorded on the film (called 
the peak of the signal for convenience), and the thickness of the base line varied 
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FIGURE 9. Ratio of band-crossings to the zero-crossings in a slightly heated boundary layer; 
y/a x 0.15, R, x 5 x 104: 0, u; A, T. 

between 0.5 mm and (occasionally) 1 mm. Assuming a peak1r.m.s. ratio of about 5 ,  
this amounts t o  a dead band whose effective half-width varied between 0.25 and 0.5 
of the r.m.s. value of the signal. Visual counting under these conditions would be 
equivalent, in some sense, to  counting not the crossing rate of the mean of the signal, 
but that of a small band on either side of the mean. An estimate of the effect of this 
dead band on the crossing rate was obtained on a digital computer. If yj represents 
thej th  digital sample of the signal y with zero mean, then a zero-crossing can be said 
to have occurred if the product yi yj+l < 0. Extending this definition, a band-crossing 
can be said t o  have occurred if, in addition, ly,( < B,  ( Y ~ + ~ (  > B,  where B is the 
half-bandwidth. Figure 9 gives the ratio of the band crossing to  the zero-crossing 
frequency? as a function of the ratio of the half-bandwidth to the r.m.s. value u of 
the signal. It appears from figure 9 that, with Blu in the range 0.25-0.5, there would 
be a serious underestimate of the zero-crossing frequency in such a technique. 

t Note that this ratio is slightly different for different signals. The peakier the probability density 
at y = 0 of y, the faster is the rate of decrease of N ( B ) / N o  with B. 
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Further, a dependence of the zero-crossing rate on the film speed is also likely in 
these experiments. Low film speeds result in further compressing the length of smaller 
runs on the film ; if the runs are of small amplitudes as well, they are likely to be missed, 
thus resulting in a further underestimate of No. A similar effect is likely to be present 
even when signals are recorded on tape and processed ; for example, when the signal 
representing wall shear-stress fluctuations in the channel flow is played back into the 
electronic counting system at a tape speed of 38.1 cm s-l, the resulting count was 
7 and 8 % less than that when played back at speeds of 9.53 cm s-l and 2.38 cm s-l 
respectively, all other conditions being the same. A t  slower tape speeds, the apparent 
frequency of the signal fed into the comparator will decrease, thus effectively 
decreasing the dead band of the comparator for a given real-time frequency. 

4.2. A brief analysis of non-Gaussian signals 
One conclusion that follows from the present measurements is that A / h  x 1 even when 
drastic departures from Gaussianity occur. This seemed worth further examination. 
From the definition of A and A ,  a minor manipulation of Rice’s expression yields, 
under the assumptions leading to (3.2), 

which seems to suggest a complicated dependence of the ratio A / h  on p ,  and p p .  
However, we have already seen that the details of p ,  and p p  are not critical for the 
ratio A / h .  As a further example, consider the deterministic case of the sine wave 
y = a sinwt. Obviously p u  and pli are both non-Gaussian. Here A = (27cNO)-l = w - l ,  
and h = asinwt/wacosot = w - l ,  so that A = A. The result is true also for an 
intermittent signal such as a half-rectified sine wave. 

Table 2 summarizes the calculations using (4.1) and measurements made with 
various types of signals and probability density functi0ns.t These results show that 
the ratio A / h  is close to unity in a large number of cases irrespective of the precise 
form of p,. Sizeable departures from unity cannot, however, be ruled out, as in the 
case of triangular signal where the ratio A / h  depends on the factor l l / 1 2 ; $  even here, 
however, A / h  varies only by a factor 5 when l1/& varies a hundredfold (from 1 to 
loo), with the accompanying drastic changes in p p .  It i s  thus quite clear that 
Guussianity i s  not the limiting factor for the result A = h to hold approximately. The 
critical factor is something else, unknown at the present. 

4.3. Inner- and outer-layer similarity 
The variation of the zero-crossing frequency No across the boundary layer is shown 
in figures 10 (a ,  b ) .  In the wall region, No increases with the normal distance y ,  reaches 
a maximum value No,,, approximately a t  the outer edge of the logarithmic region, 
and decreases in the outer region (by about 20 yo of No,,,). It is of interest to note 
that No/No,,, appears to  be independent of Reynolds number in the inner layer 

t Many other more. complicated combinations of p ,  and p s  were tried with the same results, but 

3 The limits l l / l z + O  or 00 are to be excluded because h = 0 in these limits, thus violating 
these are not given here because their relation to turbulence is not clear. 

Ylvisaker’s (1965) condition. 
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(figure 1Oa)t when plotted against y+, and in the outer layer (figure l o b )  when plotted 
against y/6. This result is consistent with the familiar notion that there are essentially 
two similarity laws in a turbulent boundary layer. 

Using now the result that A / A  w 1 ,  one can also plot the Taylor microscale data in 
the form A * / A ( y )  (where A* = A&J as a further test of the inner-layer similarity. 
Data on this ratio evaluated from the measurements of Ueda & Hinze (1975) in the 
turbulent boundary layer a t  two Reynolds numbers are also shown in figure 10(a). 
The agreement with the zero-crossing data is excellent. 

t Measurements of Badri Narayanan et al. (1977) also show a drop in the crossing frequency 
towards the wall. If their crossing frequency a t  various y+ were affected by the same relative error, 
it  is likely that their data are also consistent with this similarity. A quantitative confirmation of 
this possibility cannot unfortunately be made because it is not possible to recover their data in 
the raw form. 
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FIGURE 11.  (a)  Inner scaling for the zero-crossing frequency. Zero-crossings directly measured : A, 
Wetzel t Killen (1972), pipe; 0,  0,  Repik & Sosedko (1976), boundary layer; x , present, channel; 
8, present, boundary layer. Inferred from microscale measurements: V, Klebanoff (1955), 
boundary layer; V, Comte-Bellot (1962), channel; 0,  Ueda & Hinze (1975), boundary layer; B, 
Bakewell & Lumley (1976), pipe. ( b )  Outer scaling for the zero-crossings. Symbols as in (a). 

4.4. Scaling laws for No,,, 
4.4.1. Inner layer 

The scaling laws for No,,, remain to be determined. The inner and outer 
similarities of figures 10(a, b) when normalized by No,,, suggest that i t  is enough 
to determine the scaling laws for No at a fixed y+ in the inner layer, or a fixed y/S 
in the outer layer. Because of the possible connection implied by the previous 
investigators between No,  N p  and bursts in the inner layer, we concentrated more 
on the inner layer. We first note that the zero-crossing frequency is sensibly 
independent of y+ for y+ 5 3 (as seen, for example, from the inverted triangles of figure 
10a). From measurements at two Reynolds numbers, Ueda & Hinze (1975) inferred 
that h+ z 3.ly+ for small y+, where h = Uh is the spatial microscale (assuming 
Taylor’s hypothesis to be valid). This implies that u2*/No v is a constant independent 
of Reynolds number. Several measurements of No for y+ < 3 are plotted in figure 
11 (a) .  Assuming that the inner-layer scaling in turbulent boundary layers, channels 
and pipes are essentially the same, and further that A = A, the data inferred from 
microscale measurements of other sources are also plotted in the figure. The scatter 
in the data does not permit an unambiguous fit, but a slight dependence upon the 
Reynolds number is unmistakable. A possible fit to the data is 

This slight Reynolds-number dependence cannot be attributed only to experimental 
uncertainties, and will be commented upon in $5.  

The outer scaling clearly does not apply (figure 1 1  b) .  Again, a possible fit to the 
data is 
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FIGURE 12. Variation ofX/&with Reynoldsnumber; y/6 z 0.75: V, Townsend (1951); 0, Klebanoff 
(1955) ; A, Blackwelder & Kovasznay (1970) ; 0, Antonia (1973) X, Antonia et al. (1976) ; x , Badri 
Narayanan et al. (1977); [XI, present. 

4.4.2. Outer layer 

x u, u, 
No 6 s u  

If A = A, i t  follows that 
x 271--. 

Noting that U, /U is not a strong function of Reynolds number for fixed y / 6  in the 
outer layer, it follows that 

In  the outer layer, h/6 increases monotonically with y for y / S  6 0.5, and does not vary 
a great deal for y / 6  2 0.5. In  the latter region (typically y / S  x 0.75), experimental data 
from several sources (figure 12) show that the fit 

(4.4) 

is not unreasonable (though a somewhat weaker dependence is perhaps preferable), 
thus showing general consistency with (4.3). Notice that the scatter in the data for 
this seemingly simple parameter is considerable, again not surprising in view of the 
significant influence of noise on h (see figure 7c).  

4.5. Distribution of interval between successive zero-crossings 

Consider now the distribution of the interval 1 between successive zero-crossings. The 
theoretical treatment of this problem (see e.g. Rice 1945; Longuet-Higgins 1958) is 
still incomplete. Under certain assumptions, Rice showed that, in the limit l + O ,  the 
probability density of 1 is proportional to 1 itself. Longuet-Higgins worked out the 
general asymptotic cases, but these are sufficiently complicated that a simple 
approximation, even if only empirical, is useful. For large 1 ,  it  is plausible, as Rice 
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FIGURE 13. Probability density of the interval I between successive zero-crossings in the logarithmic 
region of a turbulent boundary layer; R, E 4.9 x lo4; number of samples 16700: ---, exponential 
approximations; -, lognormal density with same mean and variance for 1 as the measured values. 
The inset shows the variation of slope of the exponential tail with Reynolds number. 

pointed out, that the probability of occurrence of a zero-crossing is independent of 
the preceding one, so that the process is of the Poisson type. In  fact, Longuet-Higgins 
quotes Kuznetsov, Stratonovich & Tiknonov (1954) as having derived an exponential 
law forp(1) when 1 is large. No simple theory exists for intervals of intermediate length. 

Figure 13 shows the normalized probability density of the interval between 
successive zero-crossings. Here Z =  mean value of 1, 1’ = r.m.s. value of 1. For 
1 - 1 2 1.21‘ the distribution can be approximated by an exponential 

where k is a constant. It is interesting to note that there is a significant region of small 
1 (-0.51’ 5 1-15 0.51‘) over which another exponential seems to fit the data 
reasonably well. It appears that a rather simple interpolation between the two 
exponentials describes the intermediate range of durations (0.51‘ < 1 - 1 < 1.21’) 
adequately.? Badri Narayanan et al. (1974, 1977) indicated that, across the entire 
boundary layer, 1 is distributed lognormally to a good approximation. The appropriate 
lognormal density evaluated from the measured values of Z and I’ is also plotted in 
the figure. Clearly, the lognormal is a reasonable fit only for relatively small 1 ;  the 
exponentials are a better overall fit to the data than the lognormal curve. 
Measurements at other Reynolds number (6.8 x lo3 < R, < lo5), not shown here, 

t For random noise it appears that a single exponential describes adequately the entire range 
of 1, with the exception of very small 1. 
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confirm these conclusions. There are too few data points at very small 1 to say 
anything definite about p(1) for that range. 

Also marked in figure 13 are the inner and outer timescales v / V ,  and S / U ,  
respectively. (These are appropriately normalized by land l'.) It is interesting to note 
that these numbers mark roughly the lower end of the respective regions of the two 
exponentials. If the long intervals are a consequence of large-scale structure passing 
the sensor, and the short intervals are a consequence largely of the nibbling small-scale 
motions superposed on large-scale structures, the above result means that both large- 
and small-scale structures are distributed exponentially. If the present interpretation 
is valid, kl', where k is the slope of the exponential tail in figure 13, should scale with 
the large-eddy timescale S/ U,. Because 1' should also scale with S/ U as it gets a large 
contribution from the longer intervals I ,  k should be independent of Reynolds number. 
The inset to figure 13 shows that this is indeed so over the range covered in the 
experiments, giving strong support to the above conclusion. 

5. Discussions and conclusions 
Badri Narayanan et al. (1974, 1977) suggested that the zero-crossing scale is the 

most appropriate scaling parameter for the rate of occurrence of high-frequency 
pulses in turbulent velocity signals, and concluded that the vortex filaments 
represented by the high-frequency pulses have an average spacing of about 6 times 
the zero-crossing lengthscale. It is established here that they are based on erroneous 
measurements: the dissipation rate even of a non-Gaussian process is not far from 
that of a Gaussian process having the same mean number of zero-crossings. 
Zero-crossing measurements can be severely affected by factors like the dynamic 
range of the signal, noise content and the cut-off frequency; when those factors are 
not taken into account, misleading conclusions can easily be drawn. Present 
measurements show that the zero-crossing scale has in fact no more information than 
the Taylor microscale. In this important aspect, the somewhat speculative conclusions 
of Antonia et al. (1976) are consistent with the present measurements. 

That the zero-crossing frequency is not equal to the pulse frequency of Rao et al. 
(1971) can be seen also as follows. First, No varies significantly across the boundary 
layer (figure lo), while Np measured by Rao et al. remains substantially independent 
of y/6 over a major part of the boundary layer. Further, we have shown that 
U,/NoS - RzO.~, while Rao et al. and Ueda & Hinze (1975) found that U,/NpS is 
a constant independent of the Reynolds number. 

Rao et al. implied that the high-frequency pulses are associated with large 
structures, and the measurements of Brown & Thomas (1977) lend support to this 
implication. In general, when a large structure passes the sensor, we expect a 
zero-crossing interval of long duration. However, because of the small-scale fluctua- 
tions superposed on the large structures, it is plausible that a long zero-crossing 
interval is in general associated with a number of short runs a t  either end.? To 
obtain a rough estimate for this fraction, assume that the interval p.d.f. is made up 
entirely of exponentials. The fraction of zero-crossing due to the large scales alone 
is then given by the area under the exponential characterizing long intervals. 

t Since a majority of the zero-crossing is really due to the small-scale motions, which are 
viscosity-dependent - even those short-duration intervals resulting when the large structures skim 
p a t  the sensor are visoosity-dependent - the zero-crossing frequency to a large measure scales with 
the inner variables. The slight degree of Reynolds-number dependence shown in (4.2) must be due 
inevitably to the (small) fraction of long intervals caused by large structures. 
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Although, because of the intermediate region of 1 not covered by either exponential, 
there is some ambiguity in estimating the fractional area, a rough estimate shows 
that the area under this exponential is about 0.2 and, by implication, this also gives 
the ratio N p / N o  a t  this Reynolds number. 

Two other points are worth a further look. First, this study has shown that A/A x 1 
for a wide variety of (but not necessarily all) strongly non-Gaussian signals. This opens 
up the possibility that Rice’s result may be valid under a more general set of 
conditions which have nothing to do with the Gaussianity of the random process. 
Secondly, the fact that the zero-crossing intervals consist of a part easily identifiable 
with small-scale motion and a part with the large-scale motion suggests that a 
selective conditional sampling technique based on zero-crossings can be useful in 
separating the properties of large and small structures in turbulent shear flows. 
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Appendix : Accuracy of zero-crossing measurements 
In the present measurements, in addition to measuring the zero-crossing frequency 

from the recorded signals using a comparator/frequency-meter combination, visual 
counting and direct evaluation on a digital computer were also employed. In the latter 
method, all signals were pre-filteredt a t  the Kolmogorov frequency and digitized at  
twice the cut-off frequency, the basic idea being essentially that there is no ‘signal’ 
beyond the Kolmogorov frequency, and that the ‘good’ signal-to-noise ratio of the 
signals ensures that the noise contamination is negligible below the Kolmogorov 
frequency. All the signals were amplified sufficiently before digitizing, so as to suit 
the dynamic range of the A/D converter. 

Table 3 gives a comparison between the values of No obtained respectively by 
comparator and digital processing in a slightly heated axisymmetric jet. The data 

An intermittent position 
(intermittency factor x 0.91) Jet axis 

Signal Comparator Digital Comparator Digital 

Axial velocity fluctuation u 310 309 260 250 
Radial velocity fluctuation u 370 335 220 203 
Temperature fluctuation 6 350 307 230 233 

TABLE 3. Comparison of the zero-crossing frequency measured by 
comparator and digital processing 

t As remarked towards the end of $3.3, cutting off at the Kolmogorov frequency does not 
automatically ensure that correct zero-crossing frequency will always be obtained. In addition, one 
generally has to make sure that there is a plateau region of the type discussed with respect to figure 
6. This was indeed ensured here. 
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Comparator Visual 

196 211 
285 305 
362 369 
470 454 
555 527 

TABLE 4. Comparison of the zero-crossing frequency obtained by 
comparator and visual methods 

correspond to the flow studied by Antonia et al. (1976). Typically, the r.m.9. value 
of the digitized signals was of the order of 1-2 V. The 10 bit digitizer has a resolution 
of about 20 mV. Thus, the number of crossings counted will not be strictly those of 
zero, but of a band whose half-bandwidth is about 0.01-0.02 times the r.m.s. value 
of the signal. Then from figure 9, the digital values may be underestimating the true 
value of about 5 yo. Even allowing for this error, it is clear that a difference of a few 
percent could exist between zero-crossing frequencies computed by those two 
different techniques. Differences of this order could arise because of the various other 
factors discussed in $3. 

A comparison was also made of the zero-crossing frequency computed by the 
comparator and visual methods. In  the visual method adopted here, the mean of the 
signal was first removedt and the signal amplified sufficiently (see $3.1) by passing 
it through a DISA 55D26 signal conditioner. Then, a large number of random samples 
of the signal was displayed on the oscilloscope and the zero-crossings counted. There 
is always some ambiguity in this technique because of the end-crossings on the 
oscilloscope screen. These were counted by the following (somewhat unsatisfactory) 
procedure. On either end of the screen, if a run appeared as if i t  had completed more 
than half its duration on the oscilloscope screen (as judged by its slope), it was 
consistently counted as a zero-crossing ; otherwise, it  was ignored. Obviously, this 
uncertainty decreases with increasing sweep time of the oscilloscope, because the total 
number of runs on the screen increases with increasing sweep time. However, the 
sweep time cannot be increased beyond a certain value because short runs then get 
so crowded together that they cannot easily be identified. 

A comparison between the analogue and visual counting for wall shear stress 
fluctuations in a channel flow is shown in table 4 for increasing values of Reynolds 
number. It is interesting (although not necessarily significant) t o  note that the ratio 
comparator/visual crossing frequency increases from a value slightly less than unity 
to a value slightly greater than unity with increase in the numerical value of No. In 
all these cases, the sweep time in the visual method was the same; i.e. the number 
of runs/frame increased with increasing No. It appears that the simple rule used here 
of treating the end-crossings on the oscilloscope screen introduces an error which 
varies systematically with No. 

It appears from this discussion that No cannot be measured easily to an accuracy 
of better than a few percent. 

t This fact was established by a real time-average performed using a box-car integrator. 
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